skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agarwal, Puneet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Social media is being increasingly utilized to spread breaking news and updates during disasters of all magnitudes. Unfortunately, due to the unmoderated nature of social media platforms such as Twitter, rumors and misinformation are able to propagate widely. Given this, a surfeit of research has studied rumor diffusion on social media, especially during natural disasters. In many studies, researchers manually code social media data to further analyze the patterns and diffusion dynamics of users and misinformation. This method requires many human hours, and is prone to significant incorrect classifications if the work is not checked over by another individual. In our studies, we fill the research gap by applying seven different machine learning algorithms to automatically classify misinformed Twitter data that is spread during disaster events. Due to the unbalanced nature of the data, three different balancing algorithms are also applied and compared. We collect and drive the classifiers with data from the Manchester Arena bombing (2017), Hurricane Harvey (2017), the Hawaiian incoming missile alert (2018), and the East Coast US tsunami alert (2018). Over 20,000 tweets are classified based on the veracity of their content as either true, false, or neutral, with overall accuracies exceeding 89%. 
    more » « less
  2. Abstract Social media has been increasingly utilized to spread breaking news and risk communications during disasters of all magnitudes. Unfortunately, due to the unmoderated nature of social media platforms such as Twitter, rumors and misinformation are able to propagate widely. Given this, a surfeit of research has studied false rumor diffusion on Twitter, especially during natural disasters. Within this domain, studies have also focused on the misinformation control efforts from government organizations and other major agencies. A prodigious gap in research exists in studying the monitoring of misinformation on social media platforms in times of disasters and other crisis events. Such studies would offer organizations and agencies new tools and ideologies to monitor misinformation on platforms such as Twitter, and make informed decisions on whether or not to use their resources in order to debunk. In this work, we fill the research gap by developing a machine learning framework to predict the veracity of tweets that are spread during crisis events. The tweets are tracked based on the veracity of their content as either true, false, or neutral. We conduct four separate studies, and the results suggest that our framework is capable of tracking multiple cases of misinformation simultaneously, with scores exceeding 87%. In the case of tracking a single case of misinformation, our framework reaches an score of 83%. We collect and drive the algorithms with 15,952 misinformation‐related tweets from the Boston Marathon bombing (2013), Manchester Arena bombing (2017), Hurricane Harvey (2017), Hurricane Irma (2017), and the Hawaii ballistic missile false alert (2018). This article provides novel insights on how to efficiently monitor misinformation that is spread during disasters. 
    more » « less